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ABSTRACT

The oblique motion of a circular cylinder through an inviscid and incompressible fluid.
conveyed by a uniform flow at infinity, in the vicinity of another cylinder fixed in space is
considered. In a relative polar coordinate system moving with the stream, the kinetic energy of the
fluid is expressed as a funcuon of six added masses due to motions parallel and perpendicular to
the line joining the centers of the cylinder pair. The Lagrange's equations of motion are then
integrated for the trajectories of the moving cylinder. In order to evaluate the added masses and
their derivatives with respect to the separation distance between the cylinders in terms of the
hydrodynamic singularities, the method of successive images, initiated by Hicks[l], and the
Taylor's added-mass formula are applied, and analytic solutions in closed form are obtained
thereafter. The dynamic behavior of a drifting body in the close proximity of a fixed one is
investigated by considering the limiting values of the fluid kinetic energy and the interaction forces
on each body. The reliability of the numerical approximation of added masses and their derivatives
is also discussed in the present study. The integral equations, in terms of surface source
distributions and their derivatives on both circles, are carefully modified for obtaining accurate

numerical solutions.
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I. INTRODUCTION

The problem presented by motions of two or multiple solid bodies in an inviscid and
incomnressihle fluid anpears in many research fields. For example, the determination of
hvdrodynamic interactions between an offshore structure and floating 1ce masses is one of the
practical problems in the oil industry. The prediction of the amount of liquid drorlets, which are
conveyed by the air flow and collected by a solid surface, is important in the atmospheric icing
research. In all cases concerned, the Reynolds number, which is the ratio of the inertia effect to the
viscous effect, is fairly large such that the potential-flow theory is reasonably applicable.

One and half centuries ago, Hicks(1] first considered motions of two circular cylinders
moving in any manner in an unbounded fluid. He studied the velocity potential due to the
distribution of unit sources spread over each surface which was first assumed to be stationary, and
then found the velocity potential due to the motion of two cylinders by proportionating the
magnitude of each source to the normal motion of the surfaces. His method may be too
complicated to be applied in such cases where the main concern is the motion of solids only. A
general framework for the motion of solids in an inviscid fluid was presented by Lamb(2]. He
applied the Lagrange's equations of motion in generalized coordinatss to the hydrodynamic
interaction problem and related the fluid inertia to the equations of motion by virtue of the kinetic
energy of the fluid. As an example, he considered one sphere approaching another along their
centerline in a uniform flow. Yamamoto(3} and Isaacson & Cheungl4] obtained analytical and
numerical solutions for forces on a pair of cylinders. Yamamoto{3] represented the complex
potential field in terms of an infinite series of doublets by the method of successive images, which
wwas first introduced by Hicks(S! for the motion of a pair of spheres. Yamamoto also derived a
formula for forces, with some mistakes(6], on each cylinder based on the Blasius theorem.
[saacson & Cheung!4! did the same work numerically and their results agreed very well.
However, their derivations about forces on solids may hardly be generalized to the three-
dimensional problems because of the invalidity of the Blasius theorem. A better way of describing

the motion of solids would be to use the Lagrange's equations of motion and to evaluate the




hydrodynamic interactions, in terms of added masses, by means of the generalized Taylor's added-
mass formula. The application of the method of successive images is limited to certain symmetric
geometries such as a pair of spheres or circular cylinders, due to its dependence on internal isolated
singularities which cannot be found in general. Landweber and Chwang!”] developed a general
formula and a numerical model, based on the boundary integral method, to obtain the added
masses and added moments of inertia by solving the unknown source distributions on solid
surfaces. When two bodies are not quite close to each other, their method gives good numerical
results on added masses for various geometries. However, this technique depends on the
simultaneous solution of a set of Fredholm integral equations of the second kind which may cause
certain inaccuracy when the bodies are very close. There is room for further research to modify the
integral equations in order to cotain a better result for added masses and their derivatives with
respect to the separation distance in a region where the inviscid and irrotational theory itself is
valid.

Motivated by the lack of studies on the oblique motion of solids, we have investigated *he
hydrodynamic interactions due to the off-center motion of a circular-cylinder pair and obtained
analytical and numerical solutions. The motion of each body is assumed to be pureiy translational
because at any time instant, the moment due to hydrodynamic interactions is zero. The kinetic
energy of the fluid is first expressed in a polar coordinate system moving with the stream in terms
of six added masses of the bodies due to their motions parallel and perpendicular to the line joining
the centers. These added masses are in turn represented in a relative rectangular coordinate system
as a function of the separation distance and of the angle between the uniform flow and the polar
axis. By relating the absolute and relative frames of reference, the equations of motion, in
Lagrangian form, are then integrated numerically for trajectories of the drifting body in space.

In Section 2, we are concerned with the Lagrange's equations of motion expressed in the
relative and the absolute rectangular coordinates. The transformation of added masses from
rectangular coordinates to polar ones is also considered in this section. Section 3 is mainly devoted

to the exact, closed-form solutions of added masses and their derivatives for a pair of cylindcis due




to centroidal and transversal motions respectively. In Section 4, we have studied the
corresponding numerical solution based on the boundary integral method. The integral equations
for the source distribution on each surface are carefully modified and the solutions are compared
with the exact results. The trajectories of the moving body under various conditions are given and

discussed in Section 3. Finally, conclusions are presented in Section 6.

II. EQUATIONS OF MOTION
Consider the motion of two circular cylinders in an unbounded fluid which moves with a
uniform velocity U, in the x direction at infinity. In an absolute frame of reference fixed in space,
body 1 with center 0, moves with velocities u and v in the x and y directions respectively, and
body 2 with center 0, is fixed in space. Relative to a moving frame of reference, in which the fluid
is at rest at infinity, the center oy, located at (x;,y1), moves with velocities U and Us along the x
and y directions respectively, while the center 04, located at (x3,0), moves with velocity U; along

the x direction (see Fig.1a),

Ui=u-U,, Usz=v, Up=-U,. (D)

The separation distance s between the centers is given by

s =c? +h2, (2)

wherec =x;-xpandh =y, .
The fluid 1s assumed to be inviscid and incompressible and the flow iurrotational. Hence,

there exists a velocity potental ¢ which may be expressed as

o = U] + Udy + Uz0s, (3)

where 0 is the unit velocity potential corresponding to U;=1, U, =0 and U3z =0, etc. The

kinetic energy T of the fluid can then be expressed as




2T = A US+ AU+ A33US42412U,Up+2A 13U, U3 +2A53U,Us, 4)

in which Aj's (i,j = 1,2,3) are added masses given by

Aij =-p Olg_(gl ds (no sum on _]), (5)
. ;
Ay =Aji ©

p is the mass density of the fluid, n3 = ny, S3 = §y, n; denotes distance along the outward normal

to the jth body, and the integral extends over its surface S;

The motion of body 1, due to the hydrodynamic interaction, can be determined from the

Lagrange's equations of motion,

dU; d oT oT
M1 dt -——ag‘U—l+-a:, (78.)
Mlg%z_éiﬂJ,a_T’ (7b)
tou; 9y

where M is the mass of body 1 and t is the time. The added mass A;; depends on the separation

distances c and h. From (2), we have

dT odT JT dT dc dh
—_— = —— —_— -, E:UI-UZ’ a[—=U3. (8)

dx; oc  dy; oh

From equations (4),(7), and (8), we have

dU, _ 10A;, .2 8A12+18A22 2 aA13__l_aA33 2 LaAU

M = -5 U +¢ U - U +——U;U

e T2 % e Y e 2 Yt Ui
dA || dA13 dA|; JAnx dU; dU, dUs

-——UjUsz + - + UyUs - (A +A +A ,
o 1U3 (ac " ac) 2Us - (A I 127G 13 dt)

(9a)




A 2 0A
d RIS R

21
2 2 5n 3 ac

dUs 10A;, 0A;3. .2 0Axn laAzz
M =(= - U+ yu
Vdt 2 5h dc ) | T oc 2 oh

0A3 dA~2x OdA|D | 0A33 dU, du,» dUs;
+( " - e + " YU Uy + ” UsUs -~ (Ajz—— dt + A)yy—— at + A1z aQt —) .
(9b)
From (1), we have
dlz_, dUi_du dUs _dv
a "0 T Tw @ ca e (10)
By means of (1) and (10), we may simplify equations (9a,b) as
dv _ laAn 2 9A13 10As 2 dAy,
(\41+A11)d[+A|3dI—-2 % (ah 2 3% v h u
dA 0A dA 2 0A oA 8A oA
(i 1l é 2, %A1 ;s 281, 021 13 23)U0 , (11a)
ac ac ac 0 oh dh dc
du 13A11 dA13 2 1 dAx V2. dAs3
M+ A e A g = (50 a2 e
A dArr JA|2 .2 OJA dA |z A3 JA>
skoan 1dAn 12, ¢ _(8 1, 90z 93 2Rz (11b)

oh 27an om0 an o o ac

The added masses in equations (9a,b) and (11a,b) are functions of ¢ and h and evaluated in the

rectangular coordinates.

For a pair of circular cylinders, we may represent the motion of body 1 in a polar

coordinate system centered at (x, 0),

X| = X2 + S COSY,

Yi

s sinYy, (12)




and decompose each added mass into a part depending on the separation distance s and another on
the angle ¥ between the centerline 0,07 and the x axis (Fig.1b). Let A’ (i,) = 1,2,3 4) be the
added masses evaluated in the polar coordinates corresponding to the unit velocities Uy, where U,
and Ux are velocities of body 1 and body 2 respectively along the direction of the centerline 0;03,
Uiy and Uy are the correspondingz velocity ccmponents perpendicular to 0;0, (Fig.1b). Since
body 1 and body 2 ire symmetric with respect to the centerline 0,07, a sign change in U'; should
not change the fluid kinetic energy in terms of A}j. Therefore A'13=0. Similarly, A'j4 = A3 =
Ay =0. Based on the invariance of the kinetic energy to the coordinate transformation, we obtair

the relation

Ay = A'“COSzY + A'yy sinzy, A33 = A’nsin?y + A'33 COSZ"{,
A = A'QQCOSZ‘{ + A'44 sindy s Ap = A']QCOSZ‘{ + A'34Sin2Y,
Ayz = (A’ - A's3) siny cosy, Ajy = (A'y3 - A'a4)siny cosy. (13)

The derivatves of A;; with respect to ¢ and h are then expressed as functions of s and v,

JA A’ oA . .
—u = [~£ COS“Y*‘_‘}ESinzY] cosy + 2(-r\'1] +A'33)COSY Sln«{(_il_ILYL
dc Js 05 3

cosy
), etc.

0A 0A' JA'3 i
(R 11 _ [( A1 COSZY%—( ‘)351n2«{] Sln’\{ + 2(-A'11 +A"§3)COSY SlnY(
dh Js dJs )

(14)

Relyving on the foregoing transformation, we can consider the added masses due to centroidal and

ransversal motions. separately, at any time instant.

III. ADDED MASSES AND THEIR DERIVATIVES
The added masses of two bodies moving through an inviscid and incompressible fluid can

be determined in terms of hydrodynamic singularities within each body, by means of a




generalization of Taylor's added-mass theorem(®]. For a pair of three-dimensional solids moving

in any manner except pure rotations, the generalized Taylor's added-mass formula is given as

Aigip + 8pdij M = 4mp | Vj -Xj AjapdV + 3 (migp X% + Hiajp) ]
B

(no sum on B), (15)

where Aqp are added massesl’} of body § along the j-th direction due to the unit motion of body
o in the i-th direction, M'g is the mass of the fluid displaced by body B, Aiqg and miqg are the
volume-distributed source density and the isolated source strength, respectively, inside body B due
to the i-th velocity component of body @, Hiq;p is the strength of an isolated dipole in the j-th
direction inside body P associated with the i-th velocity component of body o, x; and x9; are the
j-th local coordinates of A;qg and mjgp respectively with respect to body B, the integration is over
the volume of body f3, Vg, and the summation is over all isolated singularities inside Vg. The
factor 4 in equation (15) should be changed to 2 for a pair of two-dimensional bodies. The
distributed doublets do not appear explicitly in (15) because, by integration by parts, they are
equivalent to a distribution of sources in Vg plus a surface distribution of sources on the

boundaryl10l. For the present two-dimensional problem, (15) may be simplified as

Ajj+ 0 M =2mp | \j XjMdV + 3 (m X0 + i) ]
j
(no sum on j), (16)

where the corresponding notations are defined in a similar manner to the foregoing ones.

When two circular cylinders move along the centerline 010,, with velocities U’y and U’
respectively, the method of successive images (Hicks(%], Miiller(8]) can be applied to obtain added
masses. This method, based on Taylor's added-mass formula (16) and the circle theorem,
produces <impie expressions for added masses in terms of the strengths of isolated doublets inside

circles which represent an equivalent velocity potential due to the motion of solids.




Consider first the system of hydrodynamic singularities corresponding to the unit motion of
circle 1 along the centerline 0105, U =1, U =U’s = Uy = 0 (Fig.1b). If circle 2 were absent,
the velocity potential could be represented by a doublet of strength p, = a2 located at oy in the
direction of U’y (Fig.2). However, the presence of circle 2 violates the boundary condition on
surface 2 and needs an image doublet of strength 1, = - a2b2/s2 at the inverse point P, inside circle
2 to satisfy the boundary condition on circle 2, where the minus sign for | indicates that the
doublet is in the opposite direction of U'; and the point Py is on the centerline 0;0, with Pjo; =
b2/s (Fig.2). The presence of this image doublet violates the boundary condition on surface 1 and
requires another isolated image doublet inside circle 1 and so on. The general expression for the
strengths and positions of the 2n-th (in circle 1) and the (2n+1)-th (in circle 2) doublets is given by

the iterative formula (Rouse et al.l11])

Ho = a2, )“o =3,
_ b2
H2n+1 = - H2n ()\-2“2) y
2
)"21’14-1 =8S- b ’

a2
H2n+2 = - H2n+1 )
_)‘-2n+l2

2
Ansa =S - —— . (0=0,12,...), (17)
2n+1

where A7, denotes the distance from o7 to the n-th inverse point in circle 1 and A4 that from oy

to the (n+1)-th inverse point in circle 2, all inverse points lie on the centerline 0;02. As n tends to

infinity, the system of doublets generates the same velocity potential exterior to the circles as that

due to the unit motion of circle 1 along 0;0;.




To find the closed-form expression of added masses from the iterative formula (17), it is
necessary to represent the doublet strength at the n-th iteration in terms of radii a, b, and the
separation distance s. A series expansion of added masses of two spheres due to their centroidal
motion was derived by Hicks!5) and Herman!!2! by means of the method of continued fractior.
Their result was also generalized, with slight modifications, to the case of two or multiple cylinders
by Miiller(8] and Yamamotol3]. However, an alternative expansion is used in the present study so
that we may find the derivatives of added masses with respect to s easily.

Equation (17) can be reduced to

Hop = a2 : (182)
T (eodidzAze)?
(a b)2n+2
Uonel = - - (n=0,12,..). (18b)
T oM Az Agn)?
For every n, the location of the inverse point satisfies the relations
7‘-2nx-2n+1 = 5)\-2n - bZ, )"2n+112n+2= Sk2n+l -at, (19)
After some manipulation, it can be found that
aZrn_rn+rn+l,rn+l
A2n-1A2n2. Ao = (ry Zr) (ry 2 ), (20a)
1 -I2
and
rin+l _ pyn+l
A2nA2n.1.. A =—Lr——2——, (20b)
1 -T2
where
1
r1,2=;[(52-a2-b2>t\/<s2-a2-b2)2-4a2b2 ] (21)




The n-th image-doublet strength inside circle 1 is then

(a b)2n

= a2 22a
Han =4 [a2(r 141 02rp 4+, 410 D)+ (1 M g+ 41pM) ]2 (222)
and that inside circle 2 is
2n+2
Wonel = - (a b)* (22b)

s2(ryP+rymlrp+. +rpn)2

For a fixed n, the limits of sequences {U2,], {Hon+1) as s approaches (a+b) are derived as

a2 b?

lim uZn = 2 (233.)
s—(a+b) (n(a + b) + b)
2 p2
m  fones = a_b (23b)

Hope) = - ————— .
s—s(arb) (a+b)? (n+1)2

{uz2n} and {Mz,+1} are uniformly convergent for any values of s in the region [a+b,e) since in the

limit, s—(a+0), (23a,b) decay by the rate of 1/n? and for s > (a+b),

H2n+2 =( ba )2< 1 and Hon+l =( ba )2 <1
H2n )-2n)\'2n+1 Han-1 x2n-1)\2n

Substitution of {y, and Uap+; into Taylor's added-mass formula {16) yields the expression

of added masses due to the centroidal motion of two circles in the relative polar coordinates

. - a2
A'lp=2np[ T Ham-71,
n=0

A'12=21p 3 Honst,
n=0

10




: o L. b2
App=2mp[ TWxn-51,
n=(0

A'21 = A2, (24)

where p is the density of the fluid, u*2, denotes the doublet strength inside circle 2 due to the unit
motion of itself along the centerline 0107, Uz=1, U'1=U"3=U"4=0, and is obtained directly by
interchanging a and b in equation. (17). The limiting values of added masses, as s approaches (a +

b), are obtained from expressions (23a,b) and (24)

. , a2b?2 2 1 a2
im A =2np[ 7 2 -5, (25a)
s—(a+b) (@ + b) ' n=0 n + ___b
a+b
a’b a2 b2

2
(2)=-3.28968n
s—(a+b) (a-}-b)2 C P

. (25b)
(a+b)

where £(2) is the zeta function. From (22a,b) and (24), we note that, as s increases from (a+b) to
infinity, the added mass A'|; decreases monotonically from its limiting value given in (25a) to a
constant pa? and the interaction added mass A'j; increases monotonically from the value given in
(25b) to zero.

To evaluate the derivatives of added masses directly from equation (24) by differentiating
each term of sequences {l2n} and {pon+1) With respect to s, we need to prove that in a certain
region of s, the sequences {dpop/ds} and {dus,41/ds) are uniformly convergent. By taking the

derivatives of [y, and Haq+1 directly from (18), we have

du_zn _ az aZn b2n Q_

ds ~ 0\'2n-l}\'2n-2----}-o)3 ds

O\'Zn-lx-Zn-Zu]\-o), (26a)

11




and
dHonel 2 (a b)2n+2 S d

1+ -
ds s3<12nx2n_1....x,>2[ A2nAzn.1ohp 48

(A2nA2n.1-..A1)] . (26b)

Let I, be the product Ayn.1Azn2....A. Since, from (21),

drl 2s r dr2 23 rn

an _ arz _ . =(ah)2
ds it rl‘r2 ) ds - 1'1-1'2 1] and r1r2 (ab) ’ (27)
the differential part of (26a) becomes
My M dry Mo dry
ds ~ ar, ds dr, ds
-1 -1 n+l i 2 2
— 25 Cab) a2 ) a2 e )-(n+2)(@b)2(r -1 )} .
(ry-rp)3 1 2 1 2 1 2 12

(28)
The limiting value of (26a) for fixed s > (a+b) is |

. . 2 2
hmdsz":_hm 4a(ab)“sn=0. (29)
n—ee dS =% [1o2(r)-rp)

Based on the ratio test,

lim dH2ns2/ds _  (ab)?
0= dusy/ds  (Aanhanse1)?

we conclude that the sequence {d;n/ds} is uniformly convergent in the region (a+b, o).
Similarly, we can prove that the sequence {djion.1/ds} is also uniformly convergent in the same
region. Thus, the derivatives of added masses (24) with respect to s are equal to the summations

of derivatives of the corresponding doublet strengths for (a+b) < s < oo.

From (17) and (24), we have

dio _ o dho _
ds =0, ds =1,

12




dioner _ dHoa (b2 j+ 21 ( b2 Id)\.zn)
=" n 3

ds ds \7\2n2 Ao ds

d}\2n+1 b2 d}bzn)
=l [ ,
ds (}"an ds

du2n+2 _ dion+1 a2 a2 dkzn.,.l)
ds ~~ ds ( j+2u2“*1 (}\. I ds )’

)\2n+12 2n+13
2
dxd2n+2 = 1 + a d}\'zn+l) y (30)
S )‘«2n+12 ds
and
dA'11 _ = dpuon dA'z = dMane1
& - Zgg o ds =2 X—{s .
— n:
dA'y2 o dp*one1 dA'y; dA'pp
ds =2mp % ds ds =~ ds €2y
n=

The region of convergence for derivatives of added masses in (31) is open on the left since the
limiting value of (29) is not zero as s approaches (a+b).

The above analysis for added masses and their derivatives indicates that, as the separation
distance s tends to (a+b), the kinetic energy of the fluid due to the motion of solids is finite but the
hydrodynamic interaction forces, which are functions of the derivatives of added masses with
respect to s, approach infinity.

When two circles make transversal motions perpendicular to the centerline 0703, the
strengths and locations of doublets in each circle can be determined in the same way as that used

for the centroidal motion. Thus, we have
A'l1 =A%, Ap=Au, An=-Ay. (32)

13




Since the summations of doublet strengths and their derivatives with respect to s, given by
iterarive formulas (17) and (30), are convergent to the corresponding solutions of added masses
and their derivatives, we can calculate them numerically based on these iterative formulas and
obtain the results as accurate as we want by increasing the index n to a sufficiently large number.
Practically, if s is larger than 1.5(a+b), an accuracy of five significant figures can be achieved
within a few iterations and for (a+b) < s < 1.01 (a+b), the same accuracy may need several

hundred iterations.

IV. NUMERICAL SOLUTION OF ADDED MASSES AND THEIR DERIVATIVES

The application of the afore-mentioned analysis is limited by the body geometry and flow
conditions since, in general, the velocity potential cannot be expressed in terms of isolated interior
singularities. For bodies of various geometries, however, we may have to evaluate added masses
and their derivatives numerically in terms of certain distributed singularities either inside bodies or
on the body surfaces. Landweber & Chwangl’] has developed a boundary-integral method for
two-body interaction problems based on the generalized Taylor's formula and the fundamental
relation between the velocity potential and normal velocities on solid boundaries. The accuracy of
their method depends on the simultaneous solutions of a set of Fredholm integral equations of the
second kind. Due to the singular behavior of the kernels in these equations, some numerical
inaccuracy in the solutions may be significant when two bodies are very close to each other. In
order to investigate the reliability and to improve the accuracy of numerical results, we shall
consider a pair of circles again and compare the numerical results with exact solutions.

From the work of Landweber & Chwangl’}, added masses due to the general translational

motion of a pair of two-dimensional bodies are given by

Aigjp = 27p | X;0iaadSp -M'3dij0e3 (no sum on P), (33)
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where p is the density of the fluid, M'g (B=1,2) is the mass of the fluid displaced by body B, Giap
denotes the surface source distribution on body P due to the i-th unit velocity component of body
c. and x; is the coordinate of the surface source on body . For the relative motion of two circles
concerned in the present study, the unknown surface source distributions satisfy a set of integral

equations

( cos Y12 ox dy

n EP) + F(Q"Y Ro1 dS, = U, gn—' + Ujg- R (34a)
J 1 1
[
TFQ) + | E(P) Cﬁ%l— s, = Uzi"— + U"%— , (34b)
J 2 2

where E(P) denotes the unknowan source strength at point P on circle 1, F(Q) denotes that at point
Q on circle 2, Ry is the distance between the source point on body i and the field point on the
surface of body j, n; indicates the outward normal direction at the field point on the surface of body
i, and yj; is the angle between n; and R;; (Fig.3a). In the derivation of equation(34a,b), integrals
involving the kernel (cos y11)/Ry; or (cos y22)/Ra2 reduce to zero for circles, since they are
constant on circles 1 and 2 and the integrals of E and F over closed bodies vanish identically.

To obtain the added masses, we first set Uy =1, Uy = U3 = U4 =0. The solution of

(34) for this condition yields the source distributions for evaluating A';; and A'y3,

2n

A1) =2npa? | E(a) cosa da - praZ, (35a)
o)
2n

A'12 = 2npb? [ F(0) cosO d6 . (35b)

o)

Similarly, A’y is obtained by using the source density F determined from the condition that U, =

land U =U3=U,=0,
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2n
A =2rpb? [ F(8) cosd dB - prb2. (35¢)
0

From (32) and the symmetry argument leading to (13), we have
Alz=Al=An=Au=0, (35d)

A=A, Ap=Ay Ap=-Au (35e)

The diuensionless added-mass coefficients may be defined as

kj = A'ij/ M. (36)

All integrations in equations (34a,b) are regular for s > (a+b). However, by comparing
the analytical solution of added masses from equations (17) and (24) with the numerical result from
integral equations (34) and (35) (Table 1, columns with superscripts “e" and “a"), we recognize
that a considerable deviation in the numerical result takes place when s = a+b+9, << 1. The
numerical error comes mainly from two sources, one due to the ill-conditioned kernels which have
a large and steep peak value of order o(1/8) in the region around a=n and 6=0 (Fig.3a), and
another due to the discretization of the integral equations into a set of linear algebraic equations. In
order to remove the peaks, we subtract a function, which has the same peak value and similar
behavior around oi=n and 6=0, from the integral and then add the exact integration of the function

back to the equation. Thus, equation(34a,b) is modified to

2n 2n

rE(a)+b [ [F(8") 99;7“:13 (@,8") - F(0) g1(c,8)]d6"+b [ F(0) g;(x,0')d®’
0 o

= U'jcosa+U'ssina, (37a)
2r cos Wy 2n

nF(@)+a [ (E(a") Ry (',9) - E(n) ga(a',8)]da’ + a | E(m) ga(a',0)da’
o o
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= U'bcos0+U4sinBb, (37b)

where
CO;WIQ _ a-bcos(B'-a)+scosa ’ (382)
21 (s-bcosB' +a cosa)2+ (b sin®' - a sinx )2
co;\gzl _ b - acos(8-a')-scosO (38b)
1

(s-bcosB + a c:osoc')2 + (b sin® - a sina’ )2

For simplz kernels like (38a,b), we may let g; and g; be (cos y12)/R2; and (cos y7,)/Ri2

respectively. Then integrations of g; and g on circles 2 and 1, respectively, give (Fig.3)

in 27 b
bfgi(a,0)d0'= 3 cos(a - B), (39a)
o
2
2
al ga(a'8)da’= -~ cos(® + B), (39b)
0
where
d2=s2+a2+2ascosa, d*2=s2+b2-25bcosh, (40)
and
s2 + d? - a Z+d*2-b2
B=tcos-1(——m—>, B*-‘-‘iCOS‘l(S > d* s ) (41)

The positive branches of B and B* correspond to 0 < o < 7t and 0 < 6 < & respectively, and the
negative ones to T < & < 2x and ® < 0 < 2x. Numerical results of k;; and k;y, defined by
equation (36), based on the modification are listed in Table 1. From columns with superscript "c"
in Table 1, we note immediately the significant improvement based on equation (37).

Although the integrands in equation (37a,b) vanish at 6=0 and a=r, they have not been

quite smoothed in that neighborhood. In this peak region, the difference of source strengths

F(6')-F(0) or E(a')-E(n) is not large, but its product with the ill-conditioned kernel can become
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very large, especially for the centroidal motion, such that it affects the evaluation of the integrals
significantly.  The accuracy may be further improved by choosing an appropriate quadrature
formula. It has been proved by Atkinson(!3] that if the integrand is a periodic function and the
domain of integration is evenly discretized, the trapezoidal rule provides the best numerical
estimation of the integral. However, it is clear that we should put more points in the peak region
and less points in the region where the integrand slopes gently. In the present calculation, we
subdivide the region of integration into two parts, one contains the sharp peak and the other covers
the rest(Fig.4), and in each subdivision, evaluate integrals in Eq. (37a,b) by the Gaussian
quadrature tormula. In order to compare numerical results of the integration in the peak region.
obtained by the Gaussian quadrature formula and by the trapezoidal rule, with the exact solution,

we examine the integral

n
1=j CQ%“QE(OL,G') de’, (42)
Q

where (cos y12)/Rz; is given by (38a) and « is the angle between 0,0, and 01P(Fig.3b). Ats =
a+b+d and a/b = 1.0, the integrand in (42) has a peak of the order of 0(1/8) around o = tand 8 =
0. The results are given in Fig. 5. From this figure, we observe that the deviation of the
numerical results obtained by the Gaussian quadrature formula from the exact solution is much
smaller than that by the trapezoidal rule. For a/b = 1 and various values of s, the numerical results
of added-mass coefficients, k| and k7, obtained by the trapezoidal rule with 80 points and by the
Gaussian quadrature formula with 60 points along each circle, are listed in Table 1(columns "b"
and "c"). The latter has only less than 1% error at s=2.01, while the former does not converge at s

= 2.01 and has 1.4% error for k|, at s=2.04. The size of the subdivision on each circle depends

surely on the separation distance s, since the peak becomes sharper as s is closer to (a+b). In the
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present calculation. the divisions are roughly estimated and their sizes, measured by the angle w
for a=b, are listed in Table 1.

In order to find derivatives of added masses with respect to the separation distance s in
terms of the boundary integrals, it is necessary to evaluate the derivative of the surface source
dismbuton with respect to s. For two circles, the derivatives are given implicitly by a pair of

Fredholm integral equations of the second kind,

n

REy(c)+b | [Fy(8") - F (0)1%( 0.8") dO'+
0 2
x o
bj (E(®) - FO)] (%{‘0;& (a,e')}je' = - P(at). (43a)
(6] 21
n . .
nF8)+a] [Esa) - Es(n)]w; vl (a',0) do'+
0 12
u:'n[E(a')-E(n)] dfcos Wal 0y |da = - Q@) (43b)
(g dS RIZ ’ ) * -

where E ) and Fo(8) stand for dE(a)/ds and dF(8)/ds on circles 1 and 2 respectively. and

He -
Pie) = b [ Fa0 m12 (0,8 + FOL 252 (a0 || 0o
6 R2i R, ‘

2nb
= g {Fs(0) cos(a - B) - dO) [a cosP + s cos(a-B)]}, (44a)

n
COS Vo, d{coswya . .. .
Q(G)—a) [ Es(m R (a.6)+E(n)a§( R, (o ,G;J]da

2na E(n
= n', - {E(1) cos(B + B*) +-—[b cosP* - s cos(8 + B*)]) (14b)
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Foilowing the procedure in solving (37a,b). we subdivide the region of integrations into two parts,
and in each subdivision, evaluate integrals in (44a,b) by the Gaussian quadrature formula. The set
of integral equations in (44a,b) is then solved by the Gauss-Seidel iterative method.  After the

determination of functions E¢(a) and F¢(8), the derivatives of added masses can be obtained by

simple integrations. For example, from (35a) and (35b), we have

dA i
-d—“- =2npa? | Es(a) cosa da,
§ o

n

dA'|,
12 2npb? [ F4(B) cosO db . (45)
0

ds

An accurate solution of (43a,b) is more difficult to obtain than that of (37a,b) when two
bodies are close to each other, since the kernels d(cosy2/R31)/ds and d(cosy,1/R12)/ds in (44a,b)
have peaks of the order of 0(1/82) in the region around a=n and 8=0. To solve this problem, we
simply add more points in the peak region when s is close to (a+b). For a/b=1.0, all integrals in
equations (44a,b) are evaluated by the 160-point Gaussian quadrature for 2.0 < s < 2.1 and by the
60-point Gaussian quadrature for s > 2.1. The numerical values of the derivatives of added-mass
coefficients are compared with the exact ones in Table 2. At s =2.01, the error for the derivative
of k1 with respect to s is 2.6% and that for dk;»/ds is 2.5%. Fors 2 2.02, however, the results
)t (45) based on solutions of (43a,b) agree with the exact values up to _ significant figures.

Therefore. they may be regarded as exact for all practical purposes.

V. NUMERICAL RESULTS ON TRAJECTORIES
For a pair of circular cylinders, the added masses and their derivatives with respect to s
have been evaluated exactly by the method of successive images and approximately by the
boundary integral method. By (13) and (14), the results obtained in the relative polar coordinates

can be transformed into the Cartesian coordinates in which the motions of bodies are described.
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With Aj3 =0 and Ay, = Aj3, the Lagrange's equations of motion(11a,b) are decoupled and
simplified. The instantaneous velocity components u and v of circle 1, which are functions of
added masses and their derivatives with respect to ¢ and h(Fig.1), are given by the first integration
of (11a,b) with respect to t. The trajectories of the moving circle around the fixed one, are then
integrated from u and v. In the calculation, the origin of the absolute coordinate system is located
at the center of the fixed hody. We assume that the uniform flow conveying the drifting body is
Uo= 1.0 along the x direction at infinity. When two circles are far away from each other, we may
specify the initial condition used in the solution as u, = 1.0, v, = 0.0 for so/(a+b) > 10.
Numerically, we discretize the time t into a number of intervals, 8t; (i=0,1,2, ... ), and assume that
within each time interval, velocities u and v are constants which are the same as those at the
beginning of the interval. The lengths of 8t are taken as 8t; = 0.1 when x < -3 and &t; = 0.01
when x is larger than -3.

The computation is started at the initial position (Xo, yo), Where xo =-20forb=1,a<1
and y, varies. At the beginning of each interval 8t;, u; and v; are obtained by the fourth- order
Runge-Kutta integration of (11a,b) in terms of velocities in the previous interval, u;.; and v;_), the
added masses, and their derivatives. By the end of this interval, the new position of the drifting

circle is given by

X, = X1+ u-,Sti and Yi =Y t+ Vi5ti .

This process is repeated until the separation distance s is equal to or less than (a + b), at which
impact between two bodies takes place. The radii a and b are normalized by that of the fixed
cylinder. Various ratios of a/b, depending on different physical problems, are considered in the
calculation.

We first consider a circular cylinder of ice with radius a = 0.1 and density p=0.91, moving
around a fixed cylinder of radius b=1.0. At y,=0.1, 0.3, etc., the trajectories of the ice particle

are plotted in Figures 6a to 6e for different density ratios of the body to the fluid medium. Fig.6a
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corresponds to the case of an ice particle moving in fresh water and Fig.6e shows the same ice
particle in an air flow. The ratios 2.0, 5.0 and 10.0 correspond to various fluid media and
illustrate the change of trajectories with respect to the density ratio. We note from these figures
that the lower the density ratio is, the larger the curvature of trajectories would be. In the case of
an ice particle carried by an air flow, its trajectories are almost straight lines which differ from the
streamlines greatly. It means that in a fluid of high density, the hydrodynamic interaction due to
the presence of a second body has a large effect on the body's motion.

In some physical problems, for example, in the ice coating process, it is important to
determine whether or not a drifting body, conveyed by a current, can impact with a fixed body.
This physical property can be expressed by a "collection coefficient" E which is defined as the ratio
of a critical initial position y*,, below which the drifting body will impact with the fixed body, to
the radius of the fixed body. y*, is surely depending on the ratios of a/b and p,/p. In this type of
problems, the size of the moving body is much smaller than that of the fixed one. Fig.7 shows
the result of the collection coefficient for a pair of cylinders, 0.01 < a/b < 1, in fluids of different
densities. Moving bodies of very small size are not considered since the Reynold's number
becomes quite small such that the inviscid-fluid theory is not applicable.

Regarding to a floating body in sea water, we can consider the interaction problem between
an ice floe, idealized as a cylinder, and a fixed cylindrical offshore-structure. Fig.8 shows the
trajectories of a circular cylinder in sea water. Here the density ratio p,/p is fixed at 0.89, which
corresponds to a floating ice in sea water. The radius ratio a/b is 0.5 in Fig.8a and 1.0 in Fig.8b.
We note that the trajectory of a large body is quite flat in comparison with the one of a small body.
It is understood that the inertia effect of a large body, which prevents the body getting off the
straight path, predominates over the hydrodynamic interaction force due to the presence of a
second body.

For a variety of radius ratios a/b from 0.1 to 1.0 and a fixed density ratio 0.89, the velocity
components u and v of the moving cylinder are shown in Fig.9. The initial condition used in the

calculation is xo = -20, yo = 0.5, upo=1.0, and v, = 0.0. This plot is consistent with the physical
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interpretaton. The velocity u is reduced as the moving body approaches the fixed body, and after
a certain position, it increases and reaches a maximum value around the top of the stationary
cvlinder. On the other hand, the velocity v increases from zero to a maximum value in
approaching and decreases to zero after the cylinder passes over the fixed one. We also note from
Fig.9 that for x < -2.5, velocity components for cylinders of different radii are of the same value
practically. It indicates that for two bodies apart from each other by a large distance, the

hydrodynamic interaction does not have any effects on their motion.

VI. CONCLUSIONS

The hydrodynamic interaction between two circular cylinders of different radii moving
relative to each other in a general marner is investigated based on the generalized Taylor's added-
mass formula in terms of isolated interior doublets or surface source distributions. The velocity
potential of the fluid is expressed in terms of three independent added masses and their derivatives
with respect to the separation distance, which are functions of relative sizes of the two cylinders
and the separation distance. By extending Hicks' analysis, series expressions have been
developed for derivatives of added masses based on the successive image method. In the general
case of an oblique impact, it has been found that the numerical evaluation of the derivatives of
added masses 1s more difficult than that of add:d masses themselves, becausc of the sensitive
dependence of integrals in the integral equations on the separation distance.

The Lagrange's equations of motion governing the motion of a drifting cylinder relative to a
stationary one are integrated to obtain the trajectory of the moving cylinder. The numerical results
exhibit the dependence of the hydrodynamic interaction force on the direction of the flow with
respect to the centerline joining the centers of two cylinders. The velocity component along the
centerline produces a repulsive interaction force, which prevents the collision of two bodies, while
the component perpendicular to it produces an attractive interaction force. Thus, the collision or
non-collision prediction for general oblique motions of two cylinders is much more complicated

than that for the central-impact problem.
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Due to the limitation of the potential-flow analysis, the afore-mentioned results are only

applicable to the situaton where the effects of fluid inertia and nonuniformity of the flow due to the

presence of a second body are dominant.
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Table 1. The Apalvtic and Numerical Results of Added-Mass
Coeffigients for Two Circles (a/b=1.0)

s ke skt kit ki kp® o kb ke kgt o
201 1.3753 0.7283 k¥ k% ok kk ok ek R xkk 13713 07214 120
2.02 13416 0.6924 ****  xx*x 11650 0.5159 1.3400 0.6901 12.5
2.03 13174 0.6661 1.8778 1.2302 1.2843 0.6330 1.3169 0.6653 13.0
2.04 1.2980 0.6446 1.3963 0.7446 1.2893 0.6358 1.2979 0.6443 13.5
2.05 1.2818 0.6262 1.3148 0.6600 1.2791 0.6236 1.2817 0.6261 14.0
206 1.2677 0.6100 1.2805 0.6232 1.2668 0.6092 1.2676 0.6100 14.5
2.07 1.2552 0.5955 1.2604 0.6009 1.2549 0.5952 1.2552 0.5955 15.0
2.08 1.2440 0.5822 1.2462 0.5845 1.2439 0.5821 1.2440 0.5822 15.0
2.09 1.2339 0.5700 1.2384 0.5710 1.2338 0.5700 1.2339 0.5700 15.5
2.10 1.2246 0.5587 1.2250 0.5592 1.2246 0.5587 1.2246 0.5587 16.0
100 1.0002 0.0200 1.0002 0.0200 1.0002  0.0200 1.0002 0.0200 90.0
superscript: e - exact solution from the method of successive images

a - numerical solution of Eq(34) by the trapezoidal ruie with 80 points

b - numerical solution of Eq(37) by the trapezoidal rule with 80 points

¢ - numerical solution of Eq(37) by the Gaussian quadrature with 60 points

d - ® is measured by degrees

Xk okok
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Tablz 2. Tre Analytic and Numerical Reeylte of the Derivarives

of Added-mass Coefficients for Two Circles (a/b=1.0 and ®w=20°)

s dkiy, dkiy dkiz, dkiz

ds ¢ ds " ds *° ds "
2.01 -4.22048 -4.10983 4.43434 4.32371
2.02 -2.77334 -2.77325 2.98604 2.98597
2.03 -2.13769 -2.13769 2.34932 2.34931
2.04 -1.76190 -1.76190 1.97240 1.97240
2.05 -1.50575 -1.50575 1.71691 1.71691
2.06 -1.32129 -1.32129 1.52955 1.52955
2.07 -1.17771 -1.17771 1.38485 1.38485
2.08 -1.06291 -1.06291 1.26892 1.26892
2.09 -0.96858 -0.96858 1.17347 1.17347
2.10 -0.88942 -0.88942 1.09319 1.09319

Subscripts:

e - exact solution from the iterative formulas (30) and (31)
n - numerical solution of (43a,b) and (45) by the Gaussian

quadrature formula with 160 points
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Figare la. Relative rectangular coordinate system and velocity components.

Figure 1b. Relative polar coordinate system and velocity components.
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Figure 2. First two images for two circles.
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Figure 3a. Surface integradon of source distributions on circles 1 and 2.

Figure 3b. Definition sketch for d, d*, 8, and B* used in equations (40) and (41).
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Regions Containing Peaks

Figure 4. Definition of regions containing peaks.
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Figure 5. Comparison of numerical results of integral [ in equation (42) obtained
by the wapezoidal rule with 80 points and by the Gaussian quadrature
with 60 points.
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Figure 6. Trajectories of a moving cylinder in different fluids with
;ljb::o.l, Pa= 091. LYQ = IO, and Xo &= -20.
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Figure 7. Dependence of the collection coefficient of an ice particle on its size
for various density ratios.

35




2.5

Fig. 8(a)
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Fig. 8(b)

Trajectories of a moving cylinder with U = 1.0, pa = 0.91, and pa/p = 0.89.
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Figure 9. Velocity components u and v of a moving cylinder with various radius
ratios.
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